附件:设置1:设置2:设置3:本书首先介绍深度学习、线性代数、微积分和概率论相关知识, 讨论Python编程相关的基础知识, 线性模型中的线性回归模型和logistic模型, 梯度下降法, 然后讲述深度学习的正向传播算法、反向传播算法及完整训练流程, 输出层的激活函数, 应用于隐藏层的4个常见激活函数, 深度学习的过拟合和欠拟合, 以及3种应对过拟合的方法, 以及使用TensorFlow 2.0建立深度学习模型, 接着介绍卷积神经网络 (CNN) 及其两个最重要的组成部分 —— 卷积 (convolution) 和池化 (pooling) , 如何使用TensorFlow 2.0建立卷积神经网络, 最后讨论如何从零开始实现循环神经网络, 如何搭建深度学习框架, 如何使用TensorFlow 2.0建立循环神经网络模型。摘要:
附注提要
本书首先介绍深度学习、线性代数、微积分和概率论相关知识, 讨论Python编程相关的基础知识, 线性模型中的线性回归模型和logistic模型, 梯度下降法, 然后讲述深度学习的正向传播算法、反向传播算法及完整训练流程, 输出层的激活函数, 应用于隐藏层的4个常见激活函数, 深度学习的过拟合和欠拟合, 以及3种应对过拟合的方法, 以及使用TensorFlow 2.0建立深度学习模型, 接着介绍卷积神经网络 (CNN) 及其两个最重要的组成部分 —— 卷积 (convolution) 和池化 (pooling) , 如何使用TensorFlow 2.0建立卷积神经网络, 最后讨论如何从零开始实现循环神经网络, 如何搭建深度学习框架, 如何使用TensorFlow 2